Bài tập Bồi dưỡng học sinh giỏi Toán 6 - Chuyên đề 1: Tập hợp và củng cố về số tự nhiên

Bài 1: Viết các tập hợp sau rồi tìm số phần tử của mỗi tập hợp đó:

a. Tập hợp A các số tự nhiên x mà 8 : x = 2

b. Tập hợp B các số tự nhiên x mà x + 3 < 5

c. Tập hợp C các số tự nhiên x mà x – 2 = x + 2

d. Tập hợp D các số tự nhiên x mà x : 2 = x : 4

e. Tập hợp E các số tự nhiên x mà x + 0 = x

Bài 2: Viết các tập hợp sau bằng cách liệt kê các phần tử của nó:

a. Tập hợp A các số tự nhiên có hai chữ số, trong đó chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2.

b. Tập hợp B các số tự nhiên có ba chữ số mà tổng các chữ số bằng 3.

 

docx 14 trang Đặng Luyến 01/07/2024 18420
Bạn đang xem tài liệu "Bài tập Bồi dưỡng học sinh giỏi Toán 6 - Chuyên đề 1: Tập hợp và củng cố về số tự nhiên", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài tập Bồi dưỡng học sinh giỏi Toán 6 - Chuyên đề 1: Tập hợp và củng cố về số tự nhiên

Bài tập Bồi dưỡng học sinh giỏi Toán 6 - Chuyên đề 1: Tập hợp và củng cố về số tự nhiên
CHUYÊN ĐỀ 1: TẬP HỢP VÀ CỦNG CỐ VỀ SỐ TỰ NHIÊN
DẠNG 1: TẬP HỢP TRÊN SỐ TỰ NHIÊN
Bài 1: Viết các tập hợp sau rồi tìm số phần tử của mỗi tập hợp đó:
Tập hợp A các số tự nhiên x mà 8 : x = 2
Tập hợp B các số tự nhiên x mà x + 3 < 5
Tập hợp C các số tự nhiên x mà x – 2 = x + 2
Tập hợp D các số tự nhiên x mà x : 2 = x : 4
Tập hợp E các số tự nhiên x mà x + 0 = x
Bài 2: Viết các tập hợp sau bằng cách liệt kê các phần tử của nó:
Tập hợp A các số tự nhiên có hai chữ số, trong đó chữ số hàng ... nhất một trong hai số 2 và 3?
Không chia hết cho 2 và không chia hết cho 3?
Bài 2: Trong các số tự nhiên từ 1 đến 1000, có bao nhiêu số:
Chia hết cho ít nhất một trong các số 2, 3, 5?
Không chia hết cho tất cả các số tự nhiên từ 2 đến 5?
Bài 3: Trong số 100 học sinh có 75 học sinh thích học Toán, 60 học sinh thích Văn.
Nếu có 5 học sinh không thích cả Toán lẫn Văn thì có bao nhiêu học sinh thích cả hai môn Văn và Toán?
Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán?
Có ít...Chứa đúng hai chữ số 4?
Chia hết cho 5, có chứa chữ số 5?
Chia hết cho 3, không chứa chữ số 3?
Bài 8: Viết dãy số tự nhiên từ 1 đến 999 ta được một số tự nhiên A.
Số A có bao nhiêu chữ số?
Tính tổng các chữ số của số A?
Chữ số 1 được viết bao nhiêu lần?
Chứ số 0 được viết bao nhiêu lần?
Bài 9: Từ các chữ số 1, 2, 3, 4, lập tất cả các số tự nhiên mà mỗi chữ số trên đều có mặt đúng một lần. Tính tổng các số ấy.
DẠNG 3: TÌM SỐ TỰ NHIÊN
Bài 1: Tìm số tự nhiên có năm chữ số, biết rằng nếu v...m hai số đó.
Bài 5: Tìm hai số, biết rằng tổng của chúng gấp 5 lần hiệu của chúng, tích của chúng gấp 24 lần hiệu của chúng.
Bài 6: Tích của hai số là 6210. Nếu giảm một thừa số đi 7 đơn vị thì tích mới là 5265. Tìm các thừa số của tích.
Bài 7: Một học sinh nhân một số với 463. Vì bạn đó viết các chữ số tận cùng của các tích riêng ở cùng một cột nên tích bằng 30524. Tìm số bị nhân?
Bài 8: Tìm thương của một phép chia, biết rằng nếu thêm 15 vào số bị chia và thêm 5 vào số chia thì thương và s... = 4
A ={4} 
Tập hợp B các số tự nhiên x mà x + 3 < 5
x < 2
A ={0; 1}
Tập hợp C các số tự nhiên x mà x – 2 = x + 2
0.x = 4
A = ∅
Tập hợp D các số tự nhiên x mà x : 2 = x : 4
x = 0
A ={0}
Tập hợp E các số tự nhiên x mà x + 0 = x
x = x 
A ={0; 1; 2; 3; .}
Bài 2: Viết các tập hợp sau bằng cách liệt kê các phần tử của nó:
Tập hợp A các số tự nhiên có hai chữ số, trong đó chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2.
A ={20; 31; 42; 53;64; 75; 86; 97}
Tập hợp B các số tự nh...3}; O ={1; 3; 4} ; P ={2; 3; 4}; T = {1; 2; 4}
Q = ∅
A ={1; 2; 3; 4}
DẠNG 2: ĐẾM
Bài 1: Trong các số tự nhiên từ 1 đến 100, có bao nhiêu số:
Chia hết cho 2 mà không chia hết cho 3?
Các số chia hết cho 2:1; 2; 4; ; 100
số các số chia hết cho 2 là: (100-2)2 + 1 = 50 số
Các số chia hết cho 2 và 3: 6; 12; 18; 24; ; 96
số các số chia hết cho cả 2 và 3 là : (96-6)6 +1 = 16 số
Vậy từ 1 – 100 có 50 – 16 = 34 số chia hết cho 2 mà không chia hết cho 3 
Chia hết cho ít nhất một trong hai số 2 và..., chia hết cho 5, chia hết cho 2 và 3, chia hết cho 2 và 5, chia hết cho 3 và 5, chia hết cho cả 3 số. số phần tử của các tập hợp đó theo thứ tự bằng s1, s2, s3, s4, s5, s6, s7.
Ta có: 
s1 = 1000 : 2 = 500
s2 = [1000 : 3] = 333
s3 = 1000 : 5 = 200
s4 = [1000 : 6] = 166
s5 = 1000 : 10 = 100
s6 = [1000 : 15] = 66
s7 = [1000 : 30] = 33.
Các số phải tìm gồm: s1 + s2 +s3 – s4 – s5 –s6 +s7 = 734 số.
Không chia hết cho tất cả các số tự nhiên từ 2 đến 5?
Còn lại 1000 – 734 = 266 số
Bài 3: Tr... nhiêu học sinh không thích cả hai môn Văn và Toán?
75 – x + 60 ≤ 100 => x ≥ 35. Có ít nhất 35 học sinh thích cả hai môn Văn và Toán.
Bài 4: Có bao nhiêu số tự nhiên chia hết cho 4 gồm bốn chữ số, chữ số tận cùng bằng 2?
HƯỚNG DẪN:
Các số phải đếm có dạng abc2 
Chữ số a có 9 cách chọn
Với mỗi cách chọn a, chữ số b có 10 cách chọn
Với mỗi cách chọn a, b chữ số c có 5 cách chọn (1, 3, 5, 7, 9) để tạo với chữ số 2 tận cùng làm thành số chia hết cho 4.
Tất cả có: 9. 10 . 5 = 450 số.
Bài ...g của một cuốn sách, người ta viết dãy số tự nhiên bắt đầu từ 1 và phải dùng tất cả 1998 chữ số.
Hỏi cuốn sách có bao nhiêu trang?
Ta có : Từ trang 1 đến trang 9 phải dùng 9 chữ số ( viết tắt c/s )
Từ trang 10 đến trang 99 phải dùng (99-10)+1=90 số có 2 c/s = 180 c/s
Vì còn các trang gồm các số có 3 c/s
 Còn lại: 1998 - (180 +9 ) = 1809 c/s là đánh dấu các trang có 3 c/s
 Có: 1809:3=603 số có 3 c/s
Vậy:
 Cuốn sánh đó có : 603 + 99 =702 ( vì từ trang 1->99 có 99 trang )
Cuốn sách có 7...ách chọn, b có 9 cách chọn, c có 1 cách chọn (là 0) gồm 8.9 = 72 số
Vậy có: 180 – 72 = 108 số phải đếm
Chia hết cho 3, không chứa chữ số 3?
Số phải tìm có dạng abc, a có 8 cách chọn, b có 9 cách chọn, c có 3 cách chọn ( nếu a + b = 3k thì c = 0; 3; 6; 9, nếu a + b = 3k + 1 thì c = 2; 5; 8
Nếu a + b = 3k + 2 thì c = 1; 4; 7), có 8.9.3 = 216 số 
Bài 8: Viết dãy số tự nhiên từ 1 đến 999 ta được một số tự nhiên A.
HƯỚNG DẪN:
Số A có bao nhiêu chữ số?
Từ 1 đến 9 có 9 số gồm: 1.9 = 9 chữ số
T

File đính kèm:

  • docxbai_tap_boi_duong_hoc_sinh_gioi_toan_6_chuyen_de_1_tap_hop_v.docx